DVM Newsmakers: Stem cell researcher aims to wipe out genetically inherited infertility disorders - DVM
News Center
DVM Featuring Information from:


DVM Newsmakers: Stem cell researcher aims to wipe out genetically inherited infertility disorders


In terms of infertility problems, the research may offer the most advantages, Brinster says. For example, males who are treated with chemotherapy for malignancies, especially for boys in which there isn't sperm to save, may benefit. "In order to save the germline of that individual, you might take a testis biopsy, grow it and expand it in vitro, and freeze the cells to eventually re-implant them back into the male after the chemotherapy. In some infertility in humans and domestic animals there can be stem cells present even in those animal's deemed infertile. It might be possible to expand those stem cells and use them in a recipient to make sperm.

Brinster and other laboratories are working on a system for in vitro spermatogenesis, thereby eliminating a recipient that is difficult to manage.

Applications for the use of stem cells seem as varied as the genome itself. Just looking at it from a reproductive vantage point, the potential is enormous in creating healthier animals more resistant to disease. The serum-free culture media (stem cells hate serum) is paving the way.

Scientific slight of hand Here's how it worked: The research team identified a single growth factor: glial cell line-derived neurotrophic factor was vital for promoting a signal-pathway that allowed the cells to multiply in culture. GDNF, originally identified as a survival factor for neurons in the brain, was also found to be excreted by the Sertoli cells that surround and support the spermatogonial stem cells in the testes. Once added to the culture, GDNF caused the stem cells to form dense clusters and proliferate continuously.

The researchers then used a gene marker, GFP, in the cultured stem cells to identify the cells before transplantation back to infertile mice. These mice then produced offspring. The expression of the GFP gene made the mice glow green.

Editor's Note: Information for this story also provided by Greg Lester, University of Pennsylvania.


Source: DVM360 MAGAZINE,
Click here