Calif. researchers collaborate on animal, human health - DVM
  • SEARCH:
News Center
DVM Featuring Information from:

ADVERTISEMENT

Calif. researchers collaborate on animal, human health
UC Davis Regenerative Medicine Consortium combines veterinary medicine, human medicine and bioengineering


DVM360 MAGAZINE


Research and treatment

Nolta says a lot is happening already in the new Regenerative Medicine Consortium at UC Davis, including work on the retention of mesenchymal stem cells (MSCs), the different sites they come from, the numbers of cells needed for a treatment dose and the tissues and diseases they may benefit.

"Animal models of disease are very important to the advancement of those techniques," says Nolta. "For example, the dynamics of healing athletic injuries and immune system responses in horses will be directly translatable to our human clinical trials. The close collaboration and teamwork between the veterinary school and medical school is extremely beneficial to both of us. There are excellent facilities at the veterinary school, as they already have designated treatment facilities for horses and dogs and have regenerative medicine laboratories in place for collecting and generating stem cells."

Researchers are using bone marrow-, fat- and cord blood-derived MSCs for many treatments. "We treat horses, but we don't really know the true mechanisms behind these stem cell's actions, and though beneficial responses are seen, so far this is only anecdotal evidence," Nolta says. "This is similar to what has been done with the Vet-Stem Regenerative Cells product that contains MSCs. The veterinarian isolates the fat from a particular horse. Vet-Stem then purifies it to a fraction containing that horse's MSCs and it's injected, for example, into an injured animal's joint. Although the results have been very good, the data are strictly anecdotal, since placebo-controlled clinical trials have not been conducted."

Nolta says, though not mandated by the FDA, clinical trials are needed to ensure that significant scientific results are produced rather than placebo effects. "I'm convinced it's working. I can see a difference in the treated animals, and I don't want to be a naysayer, but the scientific community would like for it to be proven definitively."

The use of bone marrow-, fat- or cord blood-derived MSCs depends on the horse's condition and circumstance, Nolta says. Cord blood would be unavailable for an older horse, but UC Davis is beginning to bank foals' umbilical cord blood and tissues collected from various ranches and farms in California.

"Those ranches and farms are making the investment now," says Nolta. "If you don't have the umbilical cord tissue or blood-derived stem cells, you'd have to go to the horse's bone marrow or fat to harvest MSCs. The fat is a little easier to collect in horses, but bone marrow is a viable source of cells, especially in young horses."

In human MSC clinical trials, researchers often use allogeneic cells (those from another person) rather than autologous cells (from the patient's own body). In horses, the MSCs most often used for treatment are autologous, but avenues for the use of banked allogeneic stem cells are being investigated. The advantage to allogeneic cells is that they can be expanded (in a clean-room facility), and they can be quality-assured and banked and, thus, immediately be ready for use in an emergency, Nolta says.


ADVERTISEMENT

Source: DVM360 MAGAZINE,
Click here